Film Cooling and Heat Transfer in Nozzles

J. Stoll
J. Straub
Lehrstuhl A für Thermodynamik,
Technische Universität München,
Munich, Federal Republic of Germany

Introduction

Some authors have already worked on heat transfer in nozzles (e.g., Back et al., 1964, 1970, 1972; Boldmar et al., 1967, 1972; Winkler and Grigull, 1977; Bauer et al., 1977, 1978) and an increasing number of investigations has been undertaken on heat transfer in accelerated compressible flow (e.g., Kays et al., 1970; Blair, 1982; Wang et al., 1985; Rued and Wittig, 1985).

Much fundamental research has been done considering the injection geometry and the stability of cooling films. Many publications have dealt with the comparison of adiabatic and isothermal wall experiments trying to generalize the results using scaling laws (Jones and Forth, 1986) and trying to generalize the results using dimensionless variables based on recovery temperatures (Ligrani and Camci, 1985) and giving density ratio and variable property corrections in the case of compressible flow.

Only a few authors have examined the influence of mainstream pressure gradients on heat transfer to film-cooled surfaces (Hay et al., 1985). Heat transfer to a film-cooled nozzle wall is as much influenced by the strong favorable pressure gradient as by large density ratio. Furthermore the recovery temperature of both the hot gas and the coolant are submitted to substantial changes in the streamwise direction. Therefore a presentation of our test results in nondimensional form would not allow for generalization.

In order to generalize results, it is important to test and improve existing computer codes in comparison with experimental data. The work on comparison of finite difference codes for prediction of heat transfer to film-cooled surfaces (Crawford, 1986) is still continuing. In the present investigation we compare calculations with a low Reynolds number k-ε model (Lam and Bremhorst, 1981) modified for accelerated flows to our experiments.

Experiments

Experimental Setup. The experimental investigations have been performed in the wind tunnel of our institute. Compressed air is used both as hot medium and as coolant. The hot air is compressed in a two-stage radial compressor to a maximum stagnation pressure of 0.28 MPa and a maximum stagnation temperature of 485 K. The hot air passes a mixer, a straightener, and a transition pipe, where the cross section is changed from a round to a rectangular one of nearly the same area before it enters the test section with 2.8 kg/s maximum mass flow rate.

The cooling air is compressed in a smaller two-stage compressor with intermediate heat exchanger. It enters the test section with a stagnation temperature of approximately 305 K and a maximum mass flow rate of 0.25 kg/s. The whole apparatus is driven in steady state.

Test Section. The test section is an asymmetric rectangular water-cooled CD nozzle (Fig. 1), which is designed for a normal shock at its exit in the maximum loading case of the compressor allowing a maximum outlet Mach number of 2.25. The geometry of the rectangular test section in the x, y plane is shown in Fig. 1. The depth normal to Fig. 1 is 99 mm (Fig. 3) avoiding serious three-dimensional effects. The rectangular 30 deg-15 deg semicircle convergent-divergent nozzle is constructed with a plane and a contoured wall. Thus it is possible to examine the influence of the favorable pressure gradient in the absence of effects of wall curvature.

The nozzle was built up with 35 separately water-cooled segments (Fig. 3) of copper on each of the two side walls to allow very accurate measurements of the heat flux from the air to the nozzle walls. By adjusting the cooling water flow rate for each segment it is possible to establish a defined thermal boundary condition. The segments are well insulated from each other by air and a thin stainless steel tube at the nozzle surface. The gas side nozzle walls have been chrome plated in order to avoid oxidation and to reduce thermal radiation. The average surface roughness has been determined as 7.3 ±1.3 μm.

The mass flux ratio in the case of the film cooling experiments is defined by varying the hot air mass flow and the
cooling air mass flow for different slot heights for the cooling film. The inlet region of the nozzle with inlet geometry is shown in Fig. 2.

Measurement Techniques. The experimental investigation covers measurements of wall temperature, wall heat flux, wall pressures, stagnation pressure and temperature and measurements of the mass flow rates. Wall temperature and wall heat flux were measured with the heat flux meters as shown in Fig. 2 using two thermocouples installed in the copper segments. Under steady-state conditions the wall heat flux and the wall temperature are calculated from the one-dimensional heat conduction equation. Two-dimensional finite element calculations for the copper segments have proved the high accuracy of this simple method. The thermocouples are connected to a scanner and a digital voltmeter.

The wall pressures are taken from the small steel tubes between the copper segments and transferred to a Scanivalve pressure scanning system. Total pressures and total temperatures are taken from combined probes.

The mass flow rate of the hot air is calculated from one-dimensional gas dynamics relations in the absence of a cooling film. The mass flow rate of the cold air is measured with a standard orifice. The inlet velocities are calculated from the inlet geometry (Figs. 2 and 3). An HP 1000 Minicomputer was used to acquire the data from the pressure scanning system and the digital voltmeter during the test run, allowing immediate evaluation of the mass flow rates and the distribution of pressure, wall temperature, and wall heat flux. By using the computer for continuously evaluating the wall temperature and the wall heat flux during scanning, it was possible to establish isothermal wall conditions by manually adjusting the cooling water control in an acceptable time.

Calculations

Mean Flow Equations. The mean flow equations have been derived from the conservation equations using Favre mass-averaged decomposition, thus keeping the correlation terms arising from density fluctuations to a minimum and maintaining almost the same forms as the equations written for incompressible flows (Favre, 1965, 1975; Vandremon and Minh, 1984). Additional density fluctuation correlations remain unmodeled in this presentation; they are omitted right from the very beginning. The equations are given in general coordinates for stationary conditions. The mathematical notations for operators and operations in general coordinates is defined in (Klingbeil, 1966).

Continuity equation

\[\text{div} (\rho \vec{\omega}) = 0 \]

Momentum equations

\[\text{Div} (\rho \vec{\omega} \vec{\hat{w}}) = -\text{grad} \vec{p} + \text{Div} \vec{\tau} + \text{Div}(-\rho \vec{w} \vec{w}^\prime) \]

Total enthalpy equation

\[\text{Div}(\rho \vec{\omega} \vec{H}) = \text{Div} \left(\lambda \text{grad} \vec{T} \right) + \text{Div}(\vec{\tau} \cdot \vec{w}) + \text{Div}(-\rho \vec{w} \vec{w}^\prime \vec{H}^\prime) \]

\[\vec{H} = \vec{h} + \frac{\vec{w} \cdot \vec{w}}{2} + \frac{\vec{w}^\prime \cdot \vec{w}^\prime}{2} = \vec{h} + \frac{\vec{w} \cdot \vec{w}}{2} + k \]

\[\vec{H}^\prime = \vec{h}^\prime + \frac{\vec{w} \cdot \vec{w}^\prime}{2} + \frac{\vec{w}^\prime \cdot \vec{w}^\prime}{2} = \frac{\vec{w} \cdot \vec{w}^\prime}{2} \]

Assuming an ideal gas, the connection between the variables is given by the ideal gas law

\[\rho = \rho R \vec{T} \]

and the equation of state for the enthalpy

\[dh = c_p d\vec{T} \]

Turbulent Transport. Neglecting turbulent diffusive

\[z = \text{coordinate parallel to the wall} \]
\[x_t = \text{distance from turbulence grid} \]
\[\Delta y = \text{stream tube width} \]
\[\Delta x^+ = \text{dimensionless streamwise} \]
\[\text{step} = \Delta x t_{r} (\rho / \mu) \]
\[y^+ = \text{dimensionless wall} \]
\[y_{r} = \text{boundary layer thickness} \]
\[\epsilon = \text{turbulent dissipation rate} = (1/\delta) \]
\[\tau^+ = \text{Grad} \vec{w}^+ \]
\[\lambda = \text{thermal conductivity} \]
\[\mu = \text{dynamic viscosity} \]
\[\nu = \text{kinematic viscosity} = \mu / \rho \]
\[\rho = \text{density} \]
\[\sigma_t = \text{turbulent diffusion Prandtl number} \]
\[\tau = \text{shear stress} \]
\[\tau = \text{stress tensor} \]
\[\sigma_t = \mu \left[\text{Grad} \vec{w} + \left(\text{Grad} \vec{w} \right)^T - (2/3) \text{div} \left(\vec{w} \right) \right] \]

Subscripts and Superscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>denotes time-averaged value</td>
</tr>
<tr>
<td>-</td>
<td>denotes mass-averaged mean value</td>
</tr>
<tr>
<td>^</td>
<td>denotes fluctuating part of variable</td>
</tr>
<tr>
<td>0</td>
<td>denotes stagnation condition</td>
</tr>
<tr>
<td>c</td>
<td>coolent</td>
</tr>
<tr>
<td>w</td>
<td>wall</td>
</tr>
<tr>
<td>∞</td>
<td>free stream</td>
</tr>
<tr>
<td>r</td>
<td>recovery condition</td>
</tr>
<tr>
<td>t</td>
<td>turbulent</td>
</tr>
</tbody>
</table>
transport in the streamwise direction, the reduced boundary layer equations contain only two important terms: \(-\bar{\rho} \bar{u} \bar{v}^{*}\) and \(-\bar{\rho} \bar{v}^{*} \bar{H}^{*}\). The turbulent stress \(-\bar{\rho} \bar{u}^{*} \bar{v}^{*}\) in the momentum equation and the turbulent total enthalpy flux \(-\bar{\rho} \bar{v}^{*} \bar{H}^{*}\) in the total enthalpy equation are modeled using the eddy viscosity concept

\[-\bar{\rho} \bar{u}^{*} \bar{v}^{*} = \mu_t \frac{\partial u}{\partial y}
\]

(8)

and after rearranging

\[-\bar{\rho} \bar{v}^{*} \bar{H}^{*} = -\bar{\rho} \bar{v}^{*} \bar{h}^{*} - \bar{\rho} \bar{u}^{*} \bar{v}^{*} - \bar{\rho} \bar{v}^{*} \bar{k}^{*}
\]

(9)

The eddy diffusivity concept for the turbulent heat flux is

\[-\bar{\rho} \bar{v}^{*} \bar{h}^{*} = \lambda_t \frac{\partial H}{\partial y}
\]

(10)

and for the flux of turbulent kinetic energy it is

\[-\bar{\rho} \bar{v}^{*} \bar{k}^{*} = \mu_t \frac{\partial k}{\partial y}
\]

(11)

The equation for the total enthalpy flux may now be written

\[-\bar{\rho} \bar{v}^{*} \bar{H}^{*} = \frac{\lambda_t}{c_p} \frac{\partial H}{\partial y} + \left(\mu_t - \frac{\mu_t}{Pr_t} \left(\frac{\partial (\bar{u}^2/2)}{\partial y} + \frac{\partial k}{\partial y} \right) \right)
\]

(12)

where \(Pr_t\) is a turbulent Prandtl number relating the turbulent conductivity \(\lambda_t\) to the turbulent viscosity \(\mu_t\). The turbulent viscosity \(\mu_t\) is assumed to be proportional to a turbulence velocity scale and a turbulence length scale. Following the proposal of Jones and Launder (1972) the turbulence viscosity may be obtained from

\[\mu_t = C_t f_\lambda \bar{\rho} \frac{k^2}{\epsilon}
\]

(13)
where ε is the turbulent dissipation rate; C_α is a constant and f_1 is a function introduced to account for viscous effects in the near wall region.

The $k-\varepsilon$ Model. The transport equations for k and ε originally derived from the momentum equations are given in modeled form (Jones and Launder, 1972; Lam and Bremhorst, 1981). Although the ε equation can be derived with the assumption $\nu_t = \mu_t/\rho = \text{const}$, it has been widely used for variable property flows (Hein et al., 1980; Vandromme and Minh, 1984; Rodi and Scheurer, 1985).

Turbulent energy equation

$$\text{div}(\rho \dot{w}k) = \text{div}(\mu + \mu_t) \text{grad} k + P_e - \rho \varepsilon$$

$$P_e = -\rho \overline{u v} \cdot \text{grad} \overline{w} + \overline{P e}$$

$$\overline{P e} = \tau^\prime : \text{grad} \overline{w}$$

Turbulent dissipation rate equation

$$\text{div}(\rho \dot{w}\varepsilon) = \text{div} \left[\left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \text{grad} \varepsilon \right]$$

$$+ C_f f_1 \frac{\varepsilon}{k} P_e - C_2 f_2 \frac{\varepsilon^2}{k} + P_e$$

$$P_e = -2\tau^\prime : [\text{grad} \overline{w} \cdot \text{grad} \overline{w} + \overline{P e}]$$

$$-2\tau^\prime : [\overline{w} \cdot \text{grad} \text{grad} \overline{w}]$$

$$\text{div} \overline{w} = \frac{\partial \overline{u}}{\partial x} + \overline{\Gamma}_{21}^2$$

The generation terms P_e and $\overline{P e}$ are written in their original form first to give attention to effects of acceleration. For the production of turbulent energy in a boundary layer the use of streamline quasi-orthogonal coordinates leads to

$$P_e = -\overline{u v} \frac{\partial \overline{u}}{\partial y} - \rho \overline{u v} \frac{\partial u}{\partial x} - \rho \overline{u v} \frac{\partial u}{\partial z}$$

where Γ_{21} is one of the Christoffel symbols arising from tensor analysis and might be interpreted as a measure of stream tube growth; $\Gamma_{21}^2 \approx (1/\Delta y) (\partial \Delta y/\partial x)$ (an $\overline{\Gamma}_{21}^2$ is neglected; $\overline{\Gamma}_{11}^2 \approx 0$).

Elimination of $\overline{\Gamma}_{21}$ using the equation of continuity yields

$$P_e = -\overline{u v} \frac{\partial \overline{u}}{\partial y} - \rho \overline{u v} \frac{\partial u}{\partial x} - \rho \overline{u v} \frac{\partial u}{\partial z} + \overline{\Gamma}_{21}^2$$

which is consistent with Hanjalic and Launder (1980), Rodi and Scheurer (1983), and Back et al. (1964) except for the variable density term being important in the supersonic region. The first term of P_e is the most important one in a boundary layer and is obtained without additional modeling assumptions

$$-\rho \overline{u v} \frac{\partial \overline{u}}{\partial y} - \mu_t \left(\frac{\partial \overline{u}}{\partial y} \right)^2$$

Concerning the remaining terms of P_e, it is better to retain the view of P_e being an exchange term between the energy of turbulent motion and mean flow appearing with reverse sign in the equation of mechanical energy of the mean flow. In the case of a boundary layer ($u^+ u^+ > v^+ v^+$) in an accelerated flow ($\partial \overline{u} / \partial x > 0$; $\partial \overline{v} / \partial x < 0$) the remaining terms of P_e are always negative, transferring turbulent kinetic energy to mechanical energy of the mean flow.

The acceleration terms are an order of magnitude smaller than the production P_e but the small imbalance $P_e - \rho \varepsilon$ is influenced effectively. However, it would be hasty to rush to the conclusion that there is a decay of turbulent viscosity in an accelerated flow leaving the turbulent dissipation rate unconsidered. There is a quite similar behavior of the term P_e in the dissipation rate equation and the ideal for modeling is already given by Hanjalic and Launder (1972). If the increase of the standard production of ε in the low Reynolds number region (Kebede et al., 1985) is assumed to be already considered when introducing the f_1 function, and

$$-2\tau^\prime : [\overline{w} \cdot \text{grad} \text{grad} \overline{w}]$$

is neglected, as in the standard model (Lam and Bremhorst, 1981), P_e reduces to the transfer term

$$P_e = -2\tau^\prime : \left[\begin{array}{ccc} 2 \frac{\partial \overline{u}}{\partial x} & \frac{\partial \overline{u}}{\partial y} & \frac{\partial \overline{w}}{\partial x} \\ \frac{\partial \overline{u}}{\partial x} & 2 \frac{\partial \overline{u}}{\partial y} & \frac{\partial \overline{w}}{\partial y} \\ \frac{\partial \overline{u}}{\partial x} & \frac{\partial \overline{u}}{\partial y} & \frac{\partial \overline{w}}{\partial z} \end{array} \right]$$

with

$$\overline{\Gamma}_{21}^2$$

Since the transfer term contains components of

$$\rho \varepsilon = \tau^\prime : \text{grad} \overline{w} = \tau^\prime : \left[\begin{array}{ccc} \frac{\partial \overline{u}}{\partial x} & \frac{\partial \overline{u}}{\partial y} & \frac{\partial \overline{w}}{\partial x} \\ \frac{\partial \overline{u}}{\partial x} & \frac{\partial \overline{u}}{\partial y} & \frac{\partial \overline{w}}{\partial y} \\ \frac{\partial \overline{u}}{\partial x} & \frac{\partial \overline{u}}{\partial y} & \frac{\partial \overline{w}}{\partial z} \end{array} \right]$$

it seems reasonable to model the transfer term proportional to the dissipation rate and the acceleration of the flow. In the present calculations, we used the compressible analogy to the relation (Hanjalic and Launder, 1980; Rodi and Scheurer, 1983)

$$P_e = -C_f f_2 \frac{\varepsilon}{k} \left(\rho \overline{u v} \overline{u v} - \overline{u v} \overline{u v} \overline{u v} \frac{\partial \overline{u}}{\partial x} \right)$$

although the dependence on $u^+ u^+$, $v^+ v^+$, and $\overline{u} (\partial \overline{u} / \partial x)$ might be a subject for further discussion.

The constants and wall functions in the turbulence model equations (13), (14), (17), (21), and (27) are taken from Lam and Bremhorst (1981)

$$C_\mu = 0.09 \quad f_\mu = (1 - e^{-0.0165x})^2 (1 + \frac{20.5}{Re})$$

$$a_\varepsilon = 1.3$$

$$C_1 = 1.44 \quad f_1 = 1 + \left(\frac{0.05}{f_2} \right)^3$$

$$C_2 = 1.92 \quad f_2 = 1 - e^{-\frac{\varepsilon}{k} \mu}$$

$$Re_x = k^2 \rho \mu \varepsilon$$

Very little is known about the turbulence quantities $u^+ u^+$ and $v^+ v^+$ in accelerated flows appearing in the transfer terms in the turbulent transport equations. In accordance with measurements in zero pressure gradient flow, a turbulence structure coefficient for $u^+ u^+$ was used with a fixed value

$$\frac{u^+ u^+}{k} = 1$$

and $v^+ v^+$ was calculated from a standard relation (e.g., Ljubojba and Rodi, 1981; Gibson, 1978) with the additional assumption $P_e = \rho \varepsilon$.
\[
v'v'' = \frac{0.52}{k} \left(\frac{1 - 0.25 f}{1 + 0.67 f} \right)
\]

(34)

For the additional constant in the dissipation rate equation we used

\[C_3 = 4.44 \quad f_3 = 1 \]

(35)

as originally given by Hanjalic and Launder (1980).

For the turbulent Prandtl number the equation

\[Pr_t = 0.67 \frac{1 + 0.675 f}{1 + 0.5 f} \left(1 + 0.167 f \right) \]

(36)

is used as developed by Ljuboja and Rodi (1981) from an analysis of the \(u'v' \) equation. In a boundary layer

\[f = \frac{Re_t}{3.72Re_s} \left(\frac{k}{\nu} \right)^{3/2} \left(\frac{\nu}{\nu_y} \right) = \frac{L}{0.41 \nu} = 1 \]

(37)

yields \(Pr_t = 0.86 \) as used in most calculations. In the outer region \(f \rightarrow 0 \) leads to \(Pr_t = 0.67 \), which is consistent with some measurements (Townsend, 1976). The equation for \(Pr_t \) was used without modifications in the present calculations although other measurements (Fiedler, 1974; Chambers et al., 1985) indicate that the turbulent Prandtl number in a turbulent mixing layer should be even lower, e.g., \(Pr_t \approx 0.5 \), calling for a change of constants in the \(Pr_t \) formula.

Initial and Boundary Conditions

Boundary Conditions. The wall pressures obtained from the experiments were used as a boundary condition for the calculations performed with the parabolic finite difference code. In the absence of curvature effects a cross-stream zero pressure gradient was assumed in the present calculations. The assumption of negligible curvature is also valid in the case of film cooling for velocity ratios less than 3 (Abramovich, 1963). The measured wall temperatures were used as the thermal boundary condition, and the calculated wall heat flux is compared with the measured heat flux.

Velocity and kinetic energy were set to zero at the wall, and the dissipation rate of turbulent kinetic energy at the wall was calculated from the reduced turbulent kinetic energy equation

\[\epsilon_w = \frac{\mu}{\rho} \left(\frac{\partial^2 k}{\partial y^2} \right)_w \]

(38)

All variables were submitted to a vanishing cross-stream gradient as a free-stream boundary condition. In the absence of cross-stream diffusive transport the mean flow equations reproduce the isentropic relation, and the turbulence transport equations automatically reduce to the decay equations

\[u_\infty \frac{\partial k}{\partial x} = -\epsilon \]

(39)

\[u_\infty \frac{\partial \epsilon}{\partial x} = -C_2 \frac{\epsilon^2}{k} \]

(40)

Initial Conditions. As initial velocity profiles, the profile for a zero pressure gradient boundary layer developed on the surface from the suction to the coolant entry (Fig. 2) was used for the hot gas, and a velocity profile for fully delevoped channel flow was used for the cooling film. The mass flux of the coolant and the free-stream velocity were obtained from the experiment. Since the slot was not removed in the absence of coolant injection, we assumed a slightly smaller initial boundary layer thickness. In the near-wall regions the velocity profiles were determined by the law of the viscous sublayer.

The temperature profiles were obtained from the generalized Crocco relation

\[T = T_w + \left(T_r - T_w \right) \frac{u}{u_\infty} - \frac{u^2}{c_p} \]

(41)

\[r = 0.88 \]

(42)

In the fully turbulent region the turbulent kinetic energy of the hot gas boundary layer is obtained from

\[k = \frac{\tau}{\nu c_p \rho} \]

(43)

with an additional wall damping correction.

The turbulent mixing length is defined by the ramp function \(l = \min(0.41y, \mu_0) \), with \(\lambda \) as defined by Crawford and Kays (1976). The turbulent dissipation rate is calculated from (Norris, 1975)

\[\epsilon = C_\mu^{1/4} \frac{k^{3/2}}{l} \left(1 + \frac{1.9}{Re_c} \right) \]

(44)

A smooth distribution of all variables between fully turbulent region and free stream was obtained using the Wake function

\[W \left(\frac{y}{\delta} \right) = 2 \left(\frac{y}{\delta} \right)^2 - 2 \left(\frac{y}{\delta} \right)^3 \]

(45)

The free-stream value of the turbulent kinetic energy was obtained from \(k_\infty = 3/2 T_u u_\infty^2 \), with \(Tu_\infty = 1.5 \) percent from the experiments of Bauer et al. (1980) in the same test section. The free-stream dissipation rate of turbulent energy was calculated from the decay of grid turbulence

\[\epsilon_\infty = \frac{u_\infty k_\infty}{c_2 - 1} \frac{1}{x_i} \]

(46)

The turbulent kinetic energy at the entry of the cooling film was fixed at 5 percent.

Solution Procedure

The mean flow equations for momentum and total enthalpy and the transport equations for turbulent energy and turbulent dissipation rate were solved on a streamwise grid with a new computer code developed by the authors. The finite difference equations were obtained by integrating the differential equations over the grid defined control volume according to the Gaussian integration rule

\[\int_V \int_s \text{div vector} \, dV = \int_S \int_s \text{vector} \cdot \text{n} \, dS \]

(47)

where \(V = \) control volume; \(S = \) surface of control volume; \(\text{n} = \) unity vector normal to the surface. Thus conservation of convective and diffusive transport is guaranteed automatically. The usual \(\omega \) transformation (Patankar and Spalding, 1970; Crawford and Kays, 1976) is omitted for simplicity and more attention to the slowly varying region of the viscous sublayer.

The finite difference equations are solved fully implicit in the streamwise direction without iteration and interpolation for the boundary conditions.

In order to obtain grid-independent solutions a non-equidistant grid with 100 nodes was established in the cross-stream direction with a constant spreading rate of 1.1 at the starting location. The first grid node away from the wall was at a distance of \(y^+ = 0.1 \) approximately constant during the whole calculation. A constant forward step \(\Delta x = 10^{-3} \text{ m} \) was chosen in the present calculations, giving a nondimensional step size of \(300 < \Delta x^+ < 1000 \). The results remained unchanged for smaller step size. The calculation time per forward step was 0.025 s on a CDC Cyber 875 and the total computing time was 20 s per run.

The independence of the results from the calculations procedure has been examined in comparison with a modified ver-
Results

Heat transfer and film cooling have been studied for four different mainstream conditions. Mass flow, stagnation pressure, stagnation temperature, average entry velocity, and isothermal wall temperature for the heat transfer experiments are given in Table 1.

The measured pressures along the flat side of the nozzle are shown in Fig. 4. The acceleration parameter K is of the order 10^{-6} and a typical value at the throat is 0.3×10^{-6}. The wall heat flux measurements are plotted in Fig. 5 in comparison with the results calculated with the finite difference code.

In the case of film cooling, heat transfer results are shown for two mainstream conditions Figs. 7, 9, 11, and 13 for different coolant mass flow rates. The wall heat flux is plotted again in comparison with the finite difference calculations and the measured wall temperatures used as thermal boundary condition of the calculations are given in Figs. 6, 8, 10, and 12.

Injection mass flow, mass flow ratio, mass flux ratio, momentum flux ratio, injection velocity ratio, average injection velocity, injection temperature, and temperature ratio at the entry of the injected cold air are given in Tables 2–5.

Conclusions

Experiments and calculations on heat transfer and film cooling stability in a convergent-divergent nozzle are presented.

Heat Transfer. The maximum wall heat flux is determined slightly upstream from the throat as indicated in earlier measurements. In contrast to many simple correlation methods finite difference calculations predict the location of the maximum very well, but most standard turbulence models (e.g., Crawford and Kays, 1976; Norris, 1975; Norris and Reynolds, 1975; Jones and Launder, 1972; Lam and Bremhorst, 1981; Chien, 1982) underpredict the wall heat flux by approximately 10 percent. The underprediction of heat transfer has also been observed by Crawford (1986) comparing calculations with WR (Wilcox and Rubesin, 1980), JL (Jones and Launder, 1972) and CH (Chien, 1982) and two-equation turbulence models with the favorable pressure gradient experiments of (Julien et al., 1969; Theilbar et al., 1969).

Kays et al. (1970) have used a zero-equation model very similar to the STAN5 zero-equation model (Crawford and Kays, 1976), but with a higher Karman constant (0.44) in comparison to their measurements of the heat transfer to a highly accelerated turbulent boundary layer. This modification also improves the agreement between calculation and our measurements.

In the present investigation, we used a standard model (Lam and Bremhorst, 1981), but we retained the acceleration terms appearing in the turbulence transport equations and we used $C_f = 4.44$ as originally given by Hanjalic and Launder (1980). If the turbulence structure is assumed to be similar to the structure of a fully turbulent zero pressure gradient boundary layer, the wall heat flux is predicted very well.

Film Cooling. In the case of film cooling there is no influence of the throat on the cooling film stability. It should be pointed out that an injection mass flow ratio of only $m_{in}/m = 2.1$ percent (Table 3) yielded a significant decrease in heat transfer as well as the subsonic as in the supersonic region. An approximate comparison of mass flow ratios for axisymmetric nozzles may be obtained with simple geometry relations.

The calculated results are fairly good but not yet fully satisfactory for all injection rates. In contrast to the standard models predicting the wall heat flux again too small, the model with the additional acceleration terms overpredicts the heat transfer in the throat region for high injection rates.

Turbulence Model. The calculations are very sensitive to the choice of the additional constant and C_1 should be finally fixed from comparison of predictions with experiments for many different accelerated flow cases. Assumed the turbulence structure is described well with equations (33) and (34), the overprediction of heat transfer for high injection rates indicates that the constant $C_f = 4.44$ as originally given by Hanjalic and Launder (1980) might be too big.

Since acceleration acts in a different way on $\bar{u} \bar{u}$ and $\bar{v} \bar{v}$ it might also be necessary to examine the structure of accelerated boundary layers and mixing layers experimentally and to use a complete Reynolds stress model. Additionally it will be necessary to develop a $\bar{v}^2 \bar{T}$ equation for accelerated flows and to prove the concept of a turbulent Prandtl number. Finally it is important to improve the standard models in comparison with experiments in zero pressure gradient, large density ratio boundary layers.
Table 2 Injection conditions for mainstream mass flow; \(\dot{m}_1 = 1.971 \) kg/s, slot height \(s = 5 \times 10^{-3} \) m

<table>
<thead>
<tr>
<th>Symbol (figs. 6,7)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dot{m}_c)</td>
<td>0.084</td>
<td>0.059</td>
<td>0.045</td>
</tr>
<tr>
<td>(\dot{m}_c / \dot{m})</td>
<td>4.3</td>
<td>3.0</td>
<td>2.3</td>
</tr>
<tr>
<td>(\frac{\langle q_u \rangle_c}{q_u} \cdot \frac{\langle q_{uu} \rangle}{q_{uu}})</td>
<td>2.12</td>
<td>1.49</td>
<td>1.13</td>
</tr>
<tr>
<td>(u_c / u)</td>
<td>1.36</td>
<td>0.97</td>
<td>0.75</td>
</tr>
<tr>
<td>(u_c / u)</td>
<td>75.3</td>
<td>53.8</td>
<td>41.3</td>
</tr>
<tr>
<td>(T_c / T)</td>
<td>293.3</td>
<td>296.6</td>
<td>298.1</td>
</tr>
<tr>
<td>(T_c / T)</td>
<td>0.66</td>
<td>0.67</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Fig. 6 Wall temperature \(T_w(x) \) along plane nozzle wall

Fig. 7 Wall heat flux \(q_w(x) \); O,X,Y,Z measurements; finite difference calculation

Table 3 Injection conditions for mainstream mass flow; \(\Delta m = 2.221 \) kg/s, slot height \(s = 5 \times 10^{-3} \) m

<table>
<thead>
<tr>
<th>Symbol (figs. 8,9)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dot{m}_c)</td>
<td>0.081</td>
<td>0.055</td>
<td>0.046</td>
</tr>
<tr>
<td>(\dot{m}_c / \dot{m})</td>
<td>3.7</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>(\frac{\langle q_u \rangle_c}{q_u} \cdot \frac{\langle q_{uu} \rangle}{q_{uu}})</td>
<td>1.79</td>
<td>1.22</td>
<td>1.01</td>
</tr>
<tr>
<td>(u_c / u)</td>
<td>1.14</td>
<td>0.79</td>
<td>0.66</td>
</tr>
<tr>
<td>(u_c / u)</td>
<td>64.4</td>
<td>44.4</td>
<td>37.2</td>
</tr>
<tr>
<td>(T_c / T)</td>
<td>300.4</td>
<td>302.6</td>
<td>303.8</td>
</tr>
<tr>
<td>(T_c / T)</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Fig. 8 Wall temperature \(T_w(x) \) along plane nozzle wall

Fig. 9 Wall heat flux \(q_w(x) \); \(\Delta X,Y,Z \) measurements; finite difference calculation

References

Table 4 Injection conditions for mainstream mass flow; $\alpha m = 2.457$
kg/s, slot height $s = 12 \times 10^{-3}$ m

<table>
<thead>
<tr>
<th>Symbol (figs.10,11)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{m}</td>
<td>0.157</td>
<td>0.113</td>
<td>0.090</td>
</tr>
<tr>
<td>\dot{m}_c/\dot{m}</td>
<td>6.4</td>
<td>4.6</td>
<td>3.6</td>
</tr>
<tr>
<td>$(\rho u)_c$</td>
<td>1.25</td>
<td>0.90</td>
<td>0.71</td>
</tr>
<tr>
<td>ρu</td>
<td>1.00</td>
<td>0.51</td>
<td>0.33</td>
</tr>
<tr>
<td>u_c/\dot{u}</td>
<td>0.79</td>
<td>0.57</td>
<td>0.46</td>
</tr>
<tr>
<td>T_c</td>
<td>46.8</td>
<td>33.9</td>
<td>27.2</td>
</tr>
<tr>
<td>T_c/T</td>
<td>299.2</td>
<td>301.2</td>
<td>302.6</td>
</tr>
</tbody>
</table>

Fig. 10 Wall temperature $T_w(x)$ along plane nozzle wall

![Wall temperature $T_w(x)$ along plane nozzle wall](image)

Fig. 11 Wall heat flux $q_w(x)$; $\alpha X, Y, Z$ measurements; finite difference calculation

Klingbeil, E., 1966, Tensorrechnung für Ingenieure, Bibliographisches Institut AG, Mannheim.

Norris, L., 1975, “Turbulent Channel Flow With a Moving Wavy Boundary,” Dissertation, Department of Mechanical Engineering, Stanford University, Stanford, CA.

