Die Idee

Bei der Indy Autonomous Challenge (IAC) handelt es sich um einen mit 1,5 Millionen Dollar dotierten Preiswettbewerb zwischen Universitäten zur Programmierung autonom modifizierter Dallara IL-15-Rennwagen. Die Indy Autonomous Challenge baut auf der erfolgreichen DARPA Grand Challenge aus dem Jahr 2005 auf, die zu einem starken Anstieg der Forschungs-und Entwicklungsanstrengungen im Bereich autonomer Fahrzeuge führte. Die Teams werden am 23. Oktober 2021 im ersten autonomen Kopf-an-Kopf-Rennen der Welt mit Geschwindigkeiten von bis zu 300 km/h um den berühmten Indianapolis Motor Speedway gegeneinander antreten.

Das Ziel

Das Ziel des TUM-IAC Teams ist die Entwicklung einer Software, welche ein autonomes Level-5 Fahrzeug im fahrdynamischen Grenzbereich auf der Strecke mit mehreren Fahrzeugen bewegen kann. Um dieses Ziel zu erreichen, werden durch die einzelnen Teammitglieder Teilprojekte bearbeitet, die jeweils einen Beitrag zur gesamten Softwarearchitektur des Fahrzeugs liefern. Der Fokus liegt zum einem auf der dynamischen Pfadplanung mit mehreren Fahrzeugen im fahrdynamischen Grenzbereich, zum anderen auf der Umfeldwahrnehmung und Lokalization bei hohen Geschwindigkeiten. Um diese Ziele zu erreichen muss zum einen das Verhalten der gegnerischen Rennfahrzeug schnell und sicher prädiziert werden, zum anderen muss das fahrdynamische Limit für die Regelung des Fahrzeugs ermittelt werden. Die Testfahrten mit dem IAC-Fahrzeug dienen dann zur Evaluierung der Echtzeitfähigkeit, Performance und Ausfallsicherheit der neu entwickelten Algorithmen.

Das Team

Die Technische Universität München (TUM) hat sich entschieden, an der IAC mit einem eigenen Team teilzunehmen, das auf dem Wissen mehrerer Institute basiert. Das Team will verschiedene Funktionen für den Betrieb des autonomen Rennautos entwickeln und diese anschließend evaluieren. Die Mitglieder des Teams sind:

Florian Sauerbeck

Umfeldwahrnehmung

Projekt: Autonome Modellautos

Mapping

Lokalisation

Sebastian Huch

Umfeldwahrnehmung

Projekt: End-to-End Learning

Objektdetektion

Objekttracking

Felix Nobis

Umfeldwahrnehmung

Projekt: Sensordatenfusion zur Umfeldwahrnehmung

Objektdetektion

Mapping

Maximilian Geißlinger

Pfadplanung

Projekt: Ethik in autonomen Fahrfunktionen

Pfadplanung

Verhaltensplanung

Matthias Rowold

Pfadplanung

Projekt: Trajektorienplanung mit Spieltheorie

Pfadplanung

Verhaltensplanung

Phillip Karle

Pfadplanung

Projekt: Prädiktion für autonome Fahrzeuge

Prädiktion

Verhaltensplanung

Tim Stahl

Pfadplanung

Projekt: Sicherheitsberwertung autonome Fahrzeuge

Pfadplanung

Absicherung

Thomas Herrmann

Fahrzeugperformance

Projekt: Energiemanagement für Rennfahrzeuge

Simulation

Fahrzeugperformance: Energiemanagement

Leonhard Hermansdorfer

Fahrzeugperformance

Projekt: Reibwertprädiktion

Simulation

Fahrzeugperformance: Reibwert

Johannes Betz

Beratung

Fahrdynamik

Pfad-und Verhaltensplanung

Fahrzeugperformance

Wissenschaftliche Veröffentlichungen

Betz, J.; Wischnewski, A.; Heilmeier, A.; Nobis, F.; Stahl, T.; Hermansdorfer, L.; Lohmann, B.; Lienkamp, M.; „What can we learn form autonomous level 5 Motorsport?“ at the 10th international Chassis Symposium “Chassis.Tech Plus 2019”, Munich, Juni 2018, doi: 10.1007/978-3-658-22050-1_12

Heilmeier, A.; Graf, M.; Lienkamp, M.;"A Race Simulation for Strategy Decisions in Circuit Motorsports" at the 21th International Conference on Intelligent Transportation Systems (ITSC) 2018, Hawaii, October 2018,doi: 10.1109/ITSC.2018.8570012

Heilmeier, A.; Wischnewski, A.; Hermansdorfer, L.; Betz, J.; Lienkamp, M.; Lohmann, B.:"Minimum curvature trajectory planning and control for an autonomous race car" in Vehicle System Dynamics -  International Journal of Vehicle Mechanics and Mobility, pp. 1–31, June 2019, doi: 10.1080/00423114.2019.1631455

Stahl, T.; Wischnewski, A.; Betz, J.; Lienkamp, M: “ROS-based localization of a race vehicle at high-speed using LIDAR“ in E3S Web of Conferences, vol. 95, p. 4002, 2019, doi: 10.1051/e3sconf/20199504002

Betz, J.; Wischnewski, A.; Heilmeier, A.; Nobis, F.; Stahl, T.; Hermansdorfer, L.; Lienkamp, M.; „A Software Architecture for an Autonomous Racecar“ at the 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, 2019, doi: 10.1109/VTCSpring.2019.8746367

Nobis, F.; Betz, J. ; Hermansdorfer, L.; Lienkamp, M.: “Autonomous Racing: A Comparison of SLAM Algorithms for Large Scale Outdoor Environments“ in Proceedings of the 2019 3rd International Conference on Virtual and Augmented Reality Simulations - ICVARS ’19, 2019, doi: 10.1145/3332305.3332319

Palafox, P.;  Betz, J.; Nobis, F.; Riedl, K.; Lienkamp, M.:  "Fusing Semantic Segmentation and Monocular Depth Estimation for Enabling Autonomous Driving in Roads Without Lane Lines" in Sensors, vol. 19, no. 14, p. 3224, Jul. 2019,  doi: 10.3390/s19143224

Heilmeier, A.; Geisslinger, M.; Betz, J.;"A Quasi-Steady-State Lap Time Simulation for Electrified Race Cars" at the 14th International Conference on Ecological Vehicles and Renewable Energies (EVER2019), Monaco, 2019, doi: 10.1109/EVER.2019.8813646

Wischnewski, A.; Stahl, T.; Betz, J.; Lohmann, B.; „Vehicle Dynamics State Estimation and Localization for High Performance Race Cars “ IFAC-PapersOnLine, vol. 52, no. 8, pp. 154–161, 2019, doi: 10.1016/j.ifacol.2019.08.064

Stahl, T.; Wischnewski, A.; Betz, J.; Lienkamp, M: “Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dynamic Scenarios“ in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, doi: 10.1109/ITSC.2019.8917032

Hermansdorfer, L.; Betz, J.; Lienkamp, M: “ A Concept for Estimation and Prediction of the Tire-Road Friction Potential for an Autonomous Racecar“ in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, doi: 10.1109/ITSC.2019.8917024

Herrmann, T.; Christ, F.; Betz, J.; Lienkamp, M: “Energy Management Strategy for an Autonomous Electric Racecar using Optimal Control “ in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, doi: 10.1109/ITSC.2019.8917154

Wischnewski, A.; Betz, J.; Lohmann, B.: “A Model-Free Algorithm to Safely Approach the Handling Limit of an Autonomous Racecar“ in 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE 2019), Graz, Austria , 2019, doi: 10.1109/ICCVE45908.2019.8965218

Betz, J.; Wischnewski, A.; Heilmeier, A., Nobis, F.; Stahl, T.; Hermansdorfer, L.; Herrmann, T.; Lienkamp, M.;: “A Software Architecture for the Dynamic Path Planning of an Autonomous Racecar at the Limits of Handling“ in 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE 2019), doi: 10.1109/ICCVE45908.2019.8965238

Nobis, F.; Geisslinger, M.; Weber, M.; Betz, J.; Lienkamp, M.: "Learning-based Radar and Camera Sensor Fusion Architecture for Object Detection," in 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), doi: 10.1109/SDF.2019.8916629

Christ, F.; Wischnewski, A.; Heilmeier, A.; Lohmann, B.: "Time-Optimal Trajectory Planning for a Race Car Considering Variable Tire-Road Friction Coefficients" in  Vehicle System Dynamics - International Journal of Vehicle Mechanics and Mobility, doi: 10.1080/00423114.2019.1704804

Betz, J.; Heilmeier, A.; Wischnewski, A.; Stahl, T.; Lienkamp, M.;: “Autonomous Driving - A Crash Explained in Detail“ in Applied Sciences, vol. 9, no. 23, p. 5126, Nov. 2019, https://doi.org/10.3390/app9235126

Stahl, T.; Betz. J; Diermeyer, F. : “Runtime Verification Concept for Autonomous Vehicles – Exemplary Study for the Planning Module of an Autonomous Race Vehicle“ in 23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), September 2020, Rhodes, Greece, accepted, Fulltext (Preprint)

Nobis, F.; Betz. J; Lienkamp, M.: “Exploring the Capabilities and Limits of 3D Monocular Object Detection - A Study on Simulation and Real World Data“ in 23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), September 2020, Rhodes, Greece, accepted, Fulltext (Preprint)

Herrmann, T.; Passigato, F.; Betz. J; Lienkamp, M.: “Minimum Race-Time Control-Strategy for an Autonomous Electric Racecar“ in 23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), September 2020, Rhodes, Greece, accepted, Fulltext (Preprint)

Stahl, T.; Betz. J: “A Scenario Generator for Evaluating Path Planning Algorithms for Autonomous Driving” in 15th International Conference on Ecological Vehicles and Renewable Energies (EVER2020), May 2020, Monaco, France, accepted, Fulltext (Preprint)

Nobis, F.; Papanikolaoi, O.; Betz, J.; Lienkamp, M: “Persistent Map Saving for Visual Localization for Autonomous Vehicles: An ORB-SLAM Extension” in 15th International Conference on Ecological Vehicles and Renewable Energies (EVER2020), May 2020, Monaco, France, accepted, Fulltext(Preprint)

Hermansdorfer, L.; Betz, J.; Lienkamp, M: “Benchmarking of a software stack for autonomous racing against a professional human race driver” in 15th International Conference on Ecological Vehicles and Renewable Energies (EVER2020), May 2020, Monaco, France, accepted, Fulltext(Preprint)

Heilmeier, A.; Graf, M.; Betz, J.; Lienkamp, M.: ““Application of Monte Carlo Methods to Consider Probabilistic Effects in a Race Simulation for Circuit Motorsport,” Applied Sciences, vol. 10, no. 12, p. 4229, Jun. 2020, doi: https://doi.org/10.3390/app10124229

Heilmeier, A.; Thomaser, A.; Graf, M.; Betz, J.: “Virtual Strategy Engineer: Using Artificial Neural Networks for Making Race Strategy Decisions in Circuit Motorsport,” Applied Sciences, vol. 10, no. 21, p. 7805, Nov. 2020, doi: https://doi.org/10.3390/app10217805

Wischnewski, A.; Betz, J.; Lohmann, B.: „Real-Time Learning of Non-Gaussian Uncertainty Models for Autonomous Racing“ in 59th IEEE Conference on Decision and Control (CDC), Jeju Island, Republic of Korea, December 2020, accepted

Herrmann, T.; Wischnewski, A.; Hermansdorfer, L.; Betz, J.; Lienkamp, M.: „Real-Time Adaptive Velocity Optimization for Autonomous Electric Race Cars“ in IEEE Transactions on Intelligent Vehicles, under Review

Hermandorfer, L.; Trauth, R.; Betz, J.; Lienkamp, M.: „End-to-End Neural Network vor Vehicle Dynamics Modeling“ in 3rd IEEE Conference on Optimization and Modeling of Complex Systems, Agadir, Morocco, December 2020, under review