Jonas Nitzler, M.Sc.

Contact

  • Room 1230
  • Email: jonas.nitzler@tum.de
  • Phone: +49 (0) 89 289 15257
  • Fax:     +49 (0) 89 289 15301

Research interests

  • Efficient Bayesian Multi-Fidelity Schemes for Complex Systems
  • Probabilistic Models and Uncertainty Quantification (UQ)
  • Physics Informed Machine Learning
  • Inverse Problems

Articles in peer-reviewed international journals

  • C. A. Meier, S. L. Fuchs, N. Much, J. Nitzler, R. W. Penny, P. M. Praegla, S. D. Pröll, Y. Sun, R. Weissbach, M. Schreter, N. E. Hodge, A. J. Hart, W. A. Wall, Physics-Based Modeling and Predictive Simulation of Powder Bed Fusion Additive Manufacturing Across Length Scales, Surveys for Applied Mathematics and Mechanics (GAMM Mitteilungen), Wiley Online Library (2021), DOI
  • J. Nitzler, C. Meier, K. W. Müller, W. A. Wall, N. E. Hodge, A Novel Physics-Based and Data-Supported Microstructure Model for Part-Scale Simulation of Laser Powder Bed Fusion of Ti-6Al-4V, Adv. Model. and Simul. in Eng. Sci. 8, 16 (2021), DOI
  • J. Nitzler, J. Biehler, N. Fehn, P.-S. Koutsourelakis, W. A. Wall, A Generalized Probabilistic Learning Approach for Multi-Fidelity Uncertainty Propagation in Complex Physical Simulations (2020), submitted. see preprint
  • J. Biehler, M. Mäck, J. Nitzler, M. Hanss, P-S. Koutsourelakis, W. A. Wall, Multi-Fidelity Approaches for Uncertainty Quantification, Surveys for Applied Mathematics and Mechanics (GAMM Mitteilungen), Wiley Online Library (2019), DOI

International Conference Contributions with Abstract

  • J. Nitzler, W. A. Wall, P.-S. Koutsourelakis, A Bayesian Multi-Fidelity Framework for the Efficient Solution of Inverse Problems in Large-Scale Biomechanical Problems, SIAM 2021 Conference on Computational Science and Engineering, 01-05 March, 2021
  • J. Nitzler, J. Biehler, P.-S. Koutsourelakis, W. A. Wall, Uncertainty Quantification in Fluid-Structure Interaction Exploiting Automatically Generated Cheap Approximators, 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP), Crete, Greece, 24-26 June, 2019

Supervised student projects / theses

  • Maximilian Dinkel: A stabilized mesh-free Petrov-Galerkin approach interpreted as Bayesian kernel regression, Master's Thesis (in progress, supervised together with Gil Robalo Rei)
  • Maximilian Oligschläger: Injury Diagnostics in the Human Knee based on a Continuum Modeling Approach and Bayesian Inverse Analysis, Bachelor's Thesis (in progress, supervised together with Dr.-Ing. Renate Sachse)
  • Maximilian Dinkel: A Bayesian inference approach for optimal tumor treatment using Gaussian Processes, Term Paper (completed 06.2021, supervised together with Barbara Wirthl)
  • Gil Robalo Rei: Development of an Accurate and Efficient Gradient-Free Variational Inference Algorithm for the Solution of Complex Bayesian Inverse Problems, Master's Thesis (completed 03.2021)
  • Jakob Huber: Towards uncertainty quantification in all solid-state batteries, Master's Thesis (completed 01.2021, supervised together with Christoph Schmidt)
  • Tobias Wanninger: High-Dimensional Uncertainty Quantification in Low Mach Number Flows Using a Bayesian Multi-Fidelity Approach, Term Paper (completed 12.2020, supervised together with Dr.-Ing. Volker Gravemeier)
  • Dennis Berninger: Towards an efficient multi-fidelity approach for variance based global sensitivity analysis with application to large-scale vibroacoustic vehicle models, external Master's Thesis at BMW (completed 03.2021, together with Rupert Ullmann)
  • Fong-Lin Wu: High-dimensional uncertainty quantification for solution fields using a Bayesian multi-fidelity (BMFMC) and a partial least-squares polynomial chaos expansion (PLS-PCE) approach, Master's Thesis (completed 09.2020, supervised together with Max Ehre)
  • Catrin Rodenberg: Global Sensitivity Analysis of a Multiphase Model for Avascular Tumor Growth, Master's Thesis (completed 07.2020, supervised together with Johannes Kremheller)
  • Gil Robalo Rei: Towards Uncertainty Quantification in Fluid-Structure Interaction using Bayesian Multi-Fidelity Monte Carlo Methods, Term Paper (completed 05.2019)

Education

  • since 2018 Research Associate at the Institute for Computational Mechanics (Lehrstuhl für Numerische Mechanik), Technische Universität München, Germany
  • 2018 Master of Science (M.Sc.), Aerospace Engineering, Technische Universität München, Germany